If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-126=0
a = 3; b = 7; c = -126;
Δ = b2-4ac
Δ = 72-4·3·(-126)
Δ = 1561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1561}}{2*3}=\frac{-7-\sqrt{1561}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1561}}{2*3}=\frac{-7+\sqrt{1561}}{6} $
| 2(6x-15)=42 | | 7x-2-3x=x+7 | | 7x=-5x^2+10 | | Y=C1x2+C2 | | 2x-19+x-7=x | | 3u+33=9(u+5) | | -a/3=2/6 | | 8x+13-5x-15=7x-16 | | 14x+13-19=7x+15 | | 4(y+3)-3=y+3(y+3) | | −2+2w=6+5ww−2+2w=6+5w | | 300=5g | | x^2-18x-90=5 | | −2+2w=6+5ww−2+2w=6+5w. | | 4x+12-4=24 | | x-8/25=-1 | | 4(x-1)+3=-2x+19 | | -5(-2x-4)+5x-4=−29 | | 7x=32+5/3x | | 45/16+3/2x=-7/4x-19/16 | | 18+14x=20x+6 | | 3(5)=1/2(6x+24 | | -3x+-15=15 | | 3^(y-3)=12 | | 3(x+4)(x+7)=(3x+12)(3x+21) | | 5x-26=43+2x+1 | | 36(3)^x=4 | | 9^2=3^2x+1 | | 4-6(2-p)=-2 | | 3t=2(t+.25) | | 6=1.4n | | X+1-3x=-27 |